The carrier space of a reflexive operator algebra

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Dual Space of an Operator Algebra

Introduction. The purpose of this paper is to study noncommutative C*algebras as Banach spaces. The Gelfand representation of an abelian C*-algebra as the algebra of all continuous complex-valued functions on its spectrum has made it possible to apply the techniques of measure theory and the topological properties of compact Hausdorff spaces to the study of such algebras. No such structure theo...

متن کامل

Operator space structure on Feichtinger’s Segal algebra

We extend the definition, from the class of abelian groups to a general locally compact group G, of Feichtinger’s remarkable Segal algebra S0(G). In order to obtain functorial properties for non-abelian groups, in particular a tensor product formula, we endow S0(G) with an operator space structure. With this structure S0(G) is simultaneously an operator Segal algebra of the Fourier algebra A(G)...

متن کامل

On the Operator Algebra for the Space-time Uncertainty Relations

The purpose of this note is to show that the construction of the C-algebra for the space-time uncertainty relations which was introduced by Doplicher, Fredenhagen and Roberts [2,3,4] fits comfortably into the deformation quantization framework developed in [5]. This has the mild advantages that one can work directly with functions on space-time rather than with their Fourier transforms, the tre...

متن کامل

On Character Space of the Algebra of BSE-functions

Suppose that $A$ is a semi-simple and commutative Banach algebra. In this paper we try to characterize the character space of the Banach algebra $C_{rm{BSE}}(Delta(A))$ consisting of all  BSE-functions on $Delta(A)$ where $Delta(A)$ denotes the character space of $A$. Indeed, in the case that $A=C_0(X)$ where $X$ is a non-empty locally compact Hausdroff space, we give a complete characterizatio...

متن کامل

Hypersurfaces of a Sasakian space form with recurrent shape operator

Let $(M^{2n},g)$ be a real hypersurface with recurrent shapeoperator and tangent to the structure vector field $xi$ of the Sasakian space form$widetilde{M}(c)$. We show that if the shape operator $A$ of $M$ isrecurrent then it is parallel. Moreover, we show that $M$is locally a product of two constant $phi-$sectional curvaturespaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 1979

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.1979.81.417